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Abstract 8 

In forested landscapes, the presence of trees enhances turbulent airflow governing the 9 

exchange of momentum, heat, and gas between the atmosphere and biosphere, especially 10 

when horizontal motion dominates near-surface winds, and tree vibration is a prominent 11 

feature of the dynamic interaction between wind and trees. The vibration characteristics of 12 

trees reflect their underlying mechanical properties (i.e., mass, stiffness, damping) and 13 

govern their response to dynamic loads. Despite numerous investigations of tree vibration, 14 

there have been few studies examining methodological improvements for identifying and 15 

characterizing variability in the modal properties of trees during ambient wind excitation. In 16 

the engineering disciplines, however, there are several techniques commonly used to 17 

estimate the modal properties of a structure from its ambient vibration, often called 18 

‘operational modal analysis’ (OMA). Operating in the frequency domain, this study 19 

examined the use of Bayesian OMA for identifying several important modal properties, 20 

including frequencies, damping ratios, and partial mode shapes, as well as their 21 

identification uncertainty. Using the ambient vibration recorded on a mature Hopea odorata 22 

Roxb. (Dipterocarpaceae) tree over a one-week period, the identified modal properties and 23 

associated uncertainties were physically reasonable and consistent with previous 24 
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measurements for trees, and the identification uncertainty was much greater for damping 25 

ratio than frequency, which can be explained theoretically. Beyond the consistency with 26 

existing measurements, the analysis also yielded new insight about the vibration behavior of 27 

large trees. The modal properties varied considerably over consecutive one-hour intervals, 28 

and the changes were likely related to differences in wind excitation during each period, 29 

suggesting the existence of amplitude dependence in the modal properties of trees. Over 30 

the same periods, there were consistently two close modes (i.e., with similar frequencies), 31 

oriented approximately orthogonal to one another, near the tree’s fundamental frequency. 32 

With additional evaluation and refinement, the techniques can be used for OMA of trees in 33 

different settings.  34 

 35 

Highlights 36 

• Using Bayesian inference, the modal properties of trees were estimated from 37 

ambient vibrations 38 

• The identification uncertainty of modal properties was quantified and explained 39 

theoretically 40 

• Frequencies and damping ratios were physically reasonable and agree with existing 41 

measurements 42 

• The measurements revealed new features of the vibration behavior of trees over a 43 

range of conditions 44 

 45 

Keywords:  46 

Ambient modal identification, BAYOMA, Biomechanics, Operational modal analysis, Tree 47 

sway 48 
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 49 

1 Introduction 50 

Under ambient conditions, trees predominantly dissipate momentum intercepted from the 51 

moving wind by swaying (i.e., vibrating) at a fundamental mode involving trunk bending 52 

(Schindler et al., 2013a, 2010). Since a tree’s vibration characteristics govern its response to 53 

dynamic wind loads, many researchers have investigated the vibration properties of trees in 54 

various settings (de Langre, 2019), often seeking an improved understanding of wind 55 

damage to trees (Moore and Maguire, 2004). For a given species, the fundamental mode 56 

frequency varies inversely proportional to tree size in the decihertz range (Jackson et al., 57 

2019). Despite concerns about the possibility of resonant amplification from wind loads 58 

acting near a tree’s fundamental mode (Mayer, 1987), several studies have demonstrated 59 

that wind excitation and tree vibration primarily occur at distinct, separate frequencies 60 

(Gardiner, 1995; Scannell, 1983; Schindler and Mohr, 2018), and this may allow trees to 61 

efficiently dissipate kinetic energy by swaying without the harmful dynamic effects of wind 62 

loads primarily acting at frequencies below their natural frequency (Schindler and Mohr, 63 

2019). Apart from the mechanical stability of trees, other studies have suggested that tree 64 

vibration affects important physiological processes, including photosynthetic rates (Burgess 65 

et al., 2016) and gas exchange with the surrounding environment (Roden and Pearcy, 1993).  66 

 67 

Many researchers have used free vibration tests to examine variability in vibration 68 

properties associated with tree size (Bruchert and Gardiner, 2006; Jonsson et al., 2007), leaf 69 

condition (Baker, 1997; Miesbauer et al., 2014), and crown architecture (Kane et al., 2014; 70 

Sellier and Fourcaud, 2005). Although Scannell (1983) reported broad agreement between 71 

the natural frequency during free and wind-induced vibration of Sitka spruce [Picea 72 
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sitchensis (Bong.) Carr. (Pinaceae)], there is some evidence that wind loads mediate the 73 

activation of vibratory modes in trees (Schindler et al., 2013b, 2010), and it is useful to 74 

examine modal properties in the context of a specific loading environment (Schindler and 75 

Mohr, 2018). Due to viscous damping (Jonsson et al., 2007), the different methods used to 76 

deflect trees for free vibration testing may affect damping ratio estimates (Kane, 2018; 77 

Reiland et al., 2015), preventing straightforward comparisons between existing 78 

measurements. Moreover, the point loads applied to the trunk during free vibration testing 79 

poorly approximate distributed wind loads acting primarily on leaves (Vogel, 2009), and it 80 

can be practically challenging to deflect trees for free vibration testing with a heavy-duty 81 

rigging system, especially for large trees.  82 

 83 

Alternatively, many researchers have examined tree vibration during ambient wind 84 

excitation, often involving measurements recorded over extended time periods (Bunce et 85 

al., 2019; Granucci et al., 2013; Schindler et al., 2013b). Most studies estimated modal 86 

frequencies, especially for the fundamental mode, from these measurements (Schindler et 87 

al., 2012; van Emmerik et al., 2018). Despite many studies of damping mechanisms in trees 88 

(Spatz and Theckes, 2013), there are no available reports of damping ratios during ambient 89 

wind excitation, since researchers have exclusively used free vibration (Gardiner, 1989; 90 

Milne, 1991) and, occasionally, forced vibration (Castro-Garcia et al., 2008) tests to estimate 91 

damping ratios for trees. Although many acknowledge the possibility of using ambient 92 

vibration measurements to monitor changes in a tree’s physical condition (Ciruzzi and 93 

Loheide, 2019; Gougherty et al., 2018; van Emmerik et al., 2017), the variation in vibration 94 

properties associated with tree condition over time may be obscured by other sources of 95 

variability (Kooreman, 2013). There is a need for rigorous measurement and analysis 96 
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techniques to estimate the modal properties of trees from ambient vibration, and, if 97 

possible, quantify their identification uncertainty.  98 

 99 

Frequently encountered in the engineering disciplines, the attempt to identify modal 100 

properties from ambient vibration data, without knowing the excitation, is often called 101 

ambient modal identification or ‘operational modal analysis’ (OMA). Many different 102 

methods have been developed for the analysis of structural vibrations from ambient 103 

measurements. For example, stochastic subspace identification (SSI) (Peeters and De Roeck, 104 

2001; van Overschee and de Moor, 1996) estimates modal properties based on the state 105 

matrices of a time-invariant state-space model estimated by regression. Frequency domain 106 

decomposition (FDD) (Brincker et al., 2001; Pintelon and Schoukens, 2001) decomposes the 107 

power spectral density matrix estimated from measured data and uses the resulting 108 

eigenvectors and eigenvalues to estimate the mode shapes and modal properties, 109 

respectively. See Au (2017), Brincker and Ventura (2015), and Schipfors and Fabbrocino 110 

(2014) for more detailed summaries of OMA. While these methods can be viewed as 111 

constructing a statistical estimator to approximate the modal parameters sought from the 112 

measured data, Bayesian methods consider the modal parameters as random variables 113 

whose joint probability distribution depends on available information contained in the data, 114 

as well as modeling assumptions. Among different Bayesian formulations, the methods 115 

employing the fast Fourier transform (FFT) of ambient vibration time histories in a 116 

frequency band near target modes can be reasonably configured, by adjusting the size of 117 

the frequency band used for analysis, to estimate the most probable values and associated 118 

uncertainties of modal properties (Au, 2017; Yuen and Katafygiotis, 2003), and there have 119 

been many recent improvements to the associated theory, algorithmic efficiency (Zhu et al., 120 
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2021), and management of identification uncertainty for different test configurations (Au et 121 

al., 2021).  122 

 123 

Despite the potential convenience and suitability of OMA for characterizing vibration of 124 

structures experiencing environmental loads, the techniques have mostly been used on 125 

buildings, bridges, and other manmade structures (Ameri et al., 2013; DeVivo et al., 2013). 126 

See Brownjohn et al. (2011) for a review of vibration monitoring of civil infrastructure. 127 

However, there are important differences between the dynamic mechanical behavior of 128 

trees and manmade structures. In unsteady flows, leaves, easily accelerated because of 129 

their low virtual mass (Daniel, 1984), contribute most of the total drag acting on a tree 130 

(Vollsinger et al., 2005), but the slender, flexible branches to which they are attached create 131 

a slowed, large deformation response to applied loads with adaptive reconfiguration that 132 

minimizes total drag (Vogel, 2009). In general, the damping ratios of trees are greater than 133 

most manmade structures, and the vibration properties of trees change over time with 134 

meteorological seasons (Granucci et al., 2013; Reiland et al., 2015) and life stages (Sellier 135 

and Suzuki, 2020). To facilitate the use and examine the suitability of similar techniques for 136 

studying the dynamic mechanical behavior of trees, the objective of this study was to 137 

introduce and apply Bayesian OMA to estimate the modal properties of trees. For this 138 

purpose, an overview of the methodology is given in Section 2, covering basic assumptions, 139 

formulation, and computational aspects. In addition to the estimate itself, the identification 140 

uncertainty can be computed (Section 2.4) to inform the quality of the estimate, and the 141 

identification uncertainty expected for various test configurations can be evaluated with 142 

simple formulas during the planning stage of investigations (Section 2.5). In Section 3, the 143 

method is used to study the modal properties of a tree with short-term (Section 3.3) and 144 
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long-term monitoring data (Section 3.4), distinguishing between observations arising from 145 

identification uncertainty and variability due to actual changes in the tree or its 146 

environment. In Section 4, the method is appraised for the particular application, and the 147 

need for additional work is outlined, especially to optimize the techniques for use on trees. 148 

For reference, a summary of abbreviations and symbols used in this work can be found in 149 

Appendix I.  150 

 151 

2 Bayesian Inference using ambient vibration data 152 

An overview of Bayesian modal identification using ambient vibration data is presented in 153 

this section, and the following summary provides a conceptual overview of the key formulas 154 

and their role in the analysis procedure:  155 

Based on the outlined theory and assumptions (Section 2.1), the theoretical expression for 156 

the FFT of ambient vibration data in equation (2) contributes to the derivation of the 157 

corresponding power spectral density (PSD) matrix in equation (5). Based on this expression 158 

for the PSD matrix, the most probable value (MPV) of the modal parameters can be 159 

obtained through iterative optimization by minimizing the negative log-likelihood function 160 

(NLLF) in equation (8). The remaining uncertainty about the parameters, encapsulated in 161 

their posterior covariance matrix, can be determined by evaluating the Hessian of the NLLF 162 

at the MPV and inverting the resulting matrix; see Au (2017) for more detailed information 163 

about each step of the analysis process. The development and presentation of formulas 164 

throughout this work assumed the use of translational acceleration measurements of 165 

ambient vibration, but the outlined method is suitable for a general response (e.g., 166 

translational or angular motion recorded as displacement, velocity, or acceleration). A 167 
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numerical implementation of the method, available upon request, was developed using 168 

MATLAB R2020a (The MathWorks, Inc., Natick, MA).  169 

 170 

2.1 Context and assumptions 171 

Let !�̈�!$!"#
$%&

, with each �̈�!  being a 𝑛 × 1 vector, denote the ambient acceleration response of 172 

a structure at 𝑛 measured degrees of freedom (DOFs) and sampled at time interval Δ𝑡 (s) 173 

with 𝑁 sampled points per DOF. The number of measured DOFs 𝑛 is generally different from 174 

(and is typically much smaller than) the total number of DOFs governing the dynamics of the 175 

structure. The latter can be possibly infinite, but it is otherwise irrelevant to the theory in 176 

this work that focuses on modal identification rather than predicting the time-varying 177 

structural response. For clarity, the variable 𝑛 exclusively refers to the measured DOFs 178 

throughout this work (Appendix I). The scaled FFT of !�̈�!$ at frequency f' = 𝑘/𝑁Δ𝑡 (Hz) is 179 

defined as: 180 

𝑭' = 0(∆*
$
∑ �̈�!𝑒%(+𝒊!'/$$%&
!"# , (1) 181 

where 𝑭' is a 𝑛 × 1 complex valued vector. The sequence {𝑭'}'"#$%& can be obtained 182 

efficiently using the standard FFT algorithm (Cooley and Tukey, 1965) from the sequence 183 

!�̈�!$!"#
$%&

. The scaling factor 52∆𝑡/𝑁 ensures that the variance of each component of 𝑭' 184 

gives the corresponding one-sided power spectral density (PSD). Unless otherwise stated, 185 

the sequence {𝑭'}'"#$%& in equation (1) will be simply referred to as the FFT of !�̈�!$!"#
$%&

.  186 

 187 

Operating in the frequency domain, the FFT values are used as the input data for identifying 188 

modal properties. Although the FFT values are often averaged when plotting the power 189 
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spectrum for visualizing modes (Section 2.6), the values are not averaged in equation (1) for 190 

Bayesian modal identification. Instead of using the whole sequence {𝑭'}'"#$%&, however, only 191 

the FFT values in a selected frequency band near the modes of interest are used. The 192 

frequency band can be selected using the singular value (SV) spectrum (Section 2.6). Rather 193 

than using the entire sequence {𝑭'}'"#$%& from zero to the Nyquist frequency, the modeling 194 

of modal dynamics (equation (5)) and computations used to identify modal properties 195 

(Section 2.3) are significantly simplified by only considering the modes near the natural 196 

frequencies of interest. The FFT values in other, excluded frequency bands are not 197 

considered, making the modal identification process immune to activities (i.e., FFT values) in 198 

those bands that are either irrelevant to the subject modes or difficult to model.  199 

 200 

Modal dynamics under stochastic loads 201 

The following section provides a summary of the conventional assumptions used to model 202 

structural dynamics, including the definition of several properties related to those identified 203 

from ambient vibration data. For a tree modeled as a structure with displacement response 204 

vector 𝑿(𝑡) containing all governing DOFs, the standard second-order differential equation 205 

can be used to model the response: 𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝑲𝑿(𝑡) = 𝑭(𝑡), where 𝑴, 𝑪, and 𝑲 206 

are the (constant) mass matrix, damping matrix, stiffness matrix, respectively, and 𝑭(𝑡) is 207 

the force vector. For each mode 𝑖, the (undamped) natural frequency, 𝜔.  (rad s-1), and (full) 208 

mode shape, 𝝍.  (a dimensionless column vector with a number of entries corresponding to 209 

the total DOFs), are defined by the eigenvalue equation 𝑲𝝍. = 𝜔.(𝑴𝝍.. Assuming ‘classical 210 

damping’, i.e., 𝝍.
/𝑴𝝍! = 𝝍.

/𝑲𝝍! = 0 whenever 𝑖 ≠ 𝑗, the response is given by a 211 

superposition of modes, i.e., 𝑿(𝑡) = ∑𝝍. 𝜂.(𝑡), summed over all the modes and where 212 

𝜂.(𝑡) is the (scalar) 𝑖th modal response. Mathematically, a structure is classically damped if 213 
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and only if 𝑲𝑴%&𝑪 = 𝑪𝑴%&𝑲 (Caughey and O’Kelly, 1965). However, this condition can 214 

only be examined in theoretical situations amenable to such mathematical treatment, and 215 

the mechanisms responsible for damping in many structures are often more complex (e.g., 216 

hysteretic and amplitude dependent) than viscous damping. Still, many authors have shown 217 

that the damping mechanisms are often well approximated by a viscous model (Jeary, 218 

1997), even for trees (Jonsson et al., 2007). Consistent with the conventional theoretical 219 

analysis of structural dynamics, the (uncoupled) modal equation �̈�.(𝑡) + 2𝜁.𝜔.�̇�.(𝑡) +220 

𝜔.(𝜂.(𝑡) = 𝑝.(𝑡), where 𝜁. = (𝝍.
/𝑪𝝍.)/2𝜔.(𝝍.

/𝑴𝝍.) is the (dimensionless) damping ratio 221 

and 𝑝.(𝑡) = 𝝍.
/𝑭(𝑡)/(𝝍.

/𝑴𝝍.) is the modal force (per unit modal mass) can be obtained by 222 

substituting 𝑿(𝑡) = ∑𝝍.𝜂.(𝑡) into the equation of motion 𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝑲𝑿(𝑡) =223 

𝑭(𝑡) and assuming classical damping. During ambient modal identification, however, the 224 

modal properties are estimated using only ambient vibration data at a limited number of 225 

DOFs, instead of relying on the preceding theoretical relationships. Using ambient vibration 226 

data, for example, it is possible to estimate 𝜁.  and the PSD of 𝑝.(𝑡), but it is often not 227 

possible to determine 𝑪 or the PSD of 𝑭(𝑡), due to a lack of information about the complete 228 

structural response and excitation force.  229 

 230 

PSD of ambient vibration data 231 

Confining the response of a tree to the DOFs measured during vibration monitoring, i.e., 232 

𝒙(𝑡) contains selected entries of 𝑿(𝑡) at the measured DOFS, modal superposition becomes 233 

𝒙(𝑡) = 	∑𝝋.𝜂.(𝑡), where 𝝋.  is the 𝑖th mode shape (𝑛 × 1 vector) confined to the measured 234 

DOFs, often distinguished from the ‘full’ mode shape 𝝍𝒊, containing all governing DOFs, as 235 

the ‘partial’ mode shape. Assuming the measured ambient acceleration data comprises the 236 

modal response and noise, 𝜺, i.e., �̈�! = ∑𝝋.�̈�.L𝑡!M + 𝜺(𝑡!) where 𝑡! = 𝑗Δ𝑡, and 𝑚 modes 237 
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exist in the selected frequency band, limiting the range of 𝑘 considered (equation (1)), the 238 

(scaled) FFT of this relationship becomes: 239 

𝑭' = ∑ 𝝋.ℎ.'𝑝.'0
."& + 𝜺', (2) 240 

where  𝜺' (𝑛 × 1) is the FFT of data noise, 𝑝.' is the FFT of modal force 𝑝., and  241 

ℎ.' =
&

&%1!"
# %(2!1!"𝒊

 (3) 242 

is the (dimensionless) frequency response function between 𝑝.  and �̈�., where 243 

𝛽.' =
3!
4"

  (4) 244 

is the frequency ratio of the modal frequency 𝑓.  to the FFT frequency f', the reciprocal of 245 

the same equation often used for displacement. In equation (2), the term ℎ.'𝑝.', equal to 246 

the FFT of �̈�., can be derived by taking the Fourier transform (FT) of the modal equation 247 

�̈�.(𝑡) + 2𝜁.𝜔.�̇�.(𝑡) + 𝜔.(𝜂.(𝑡) = 𝑝.(𝑡) and substituting the FT of �̇�.(𝑡) and 𝜂.(𝑡) with the FT 248 

of �̈�.(𝑡) divided by 𝒊𝜔' and (𝒊𝜔')(, respectively.  249 

 250 

Under ambient vibration, the modal forces are assumed to be a stationary stochastic 251 

process. Practically, this assumption requires that the statistics of the modal forces (e.g., 252 

mean, variance, correlation) remain constant within the analyzed segment of ambient 253 

vibration data (Section 3.4). The instrument noise of each data channel is assumed to be 254 

independent and identically distributed, often reasonable for data obtained from the same 255 

hardware environment, and the noise is also assumed to be unaffected by modal forces. 256 

Based on these assumptions, the 𝑛 × 𝑛 PSD matrix of ambient vibration data is given by:  257 

𝑬' = 𝐸[𝑭'𝑭'∗ ] = ∑ 𝝋.𝝋!
/ℎ.'ℎ!'∗ 𝑆.!0

.,!"& + 𝑆7𝑰8, (5) 258 

where 𝑰8 denotes the 𝑛 × 𝑛 identity matrix, 𝑆7 is the PSD of noise, and 𝑆.! = 𝐸Y𝑝.'𝑝!'∗ Z is 259 

the cross-PSD between the modal forces of mode 𝑖 and 𝑗. In the middle expression of 260 
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equation (5), 𝐸[∙] denotes the expectation of the argument quantity. Often justified because 261 

the bandwidth is small (i.e., on the order of 𝜁.), both 𝑆7 and 𝑆.!  are assumed to be constant 262 

within the selected band. The theory and methodology presented in this work use 263 

acceleration measurements, but they are generally applicable for other types of 264 

measurements, e.g., velocity and displacement, provided that the frequency response 265 

function in equation (3) is modified accordingly. As outlined at the beginning of Section 2, 266 

the theoretical expression for the PSD matrix in equation (5) was derived from the scaled 267 

FFT of the acceleration data modeled in equation (2), but the expression of 𝑭' in equation 268 

(2) will not be directly used to estimate modal properties. Instead, the modal properties can 269 

be identified from the collection of 𝑭𝒌 in a selected frequency band, but the identification 270 

process requires additional computations, outlined in the following section.  271 

 272 

2.2 Bayesian formulation 273 

Let 𝜽 be a vector consisting of the modal parameters to be identified from the FFT {𝑭'} 274 

within the selected frequency band. In a Bayesian perspective, 𝜽 is modeled as a random 275 

vector whose probability distribution depends on available information. The information 276 

that the data {𝑭'} provides about 𝜽 is encapsulated in the posterior distribution 𝑝(𝜽|{𝑭'}), 277 

which is conditional on {𝑭'}. Using Bayes’ theorem, this can be expressed as: 278 

𝑝(𝜽|{𝑭'}) = 𝑝({𝑭'}|𝜽)
:(𝜽)

:({𝑭"})
. (6) 279 

Viewed as a distribution and, hence, a function of 𝜽, the term 𝑝({𝑭'}) does not vary with 280 

respect to 𝜽. Mathematically, 𝑝({𝑭'}) is equal to the integral of 𝑝({𝑭'}|𝜽)𝑝(𝜽) over all 281 

values of 𝜽; it is a normalizing constant ensuring 𝑝(𝜽|{𝑭'}) integrates to one, consistent 282 

with the basic properties of a probability density function. Often called the ‘prior 283 
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distribution,’ the term 𝑝(𝜽) reflects the state of knowledge about 𝜽 before data is available. 284 

The term 𝑝({𝑭'}|𝜽), called the ‘likelihood function,’ is the most important term that must 285 

be derived based on modelling assumptions to identify the parameters (𝜽) sought from 286 

measured data ({𝑭'}). In modal identification problems with hundreds of FFT values in a 287 

frequency band, the prior distribution varies slowly with 𝜽 compared to the likelihood 288 

function 𝑝({𝑭'}|𝜽), and it can be practically treated as invariant with respect to 𝜽. In 289 

practice, vibration monitoring often yields data with a sufficiently large number of FFT 290 

values in a frequency band. Since 𝑝({𝑭'}) and 𝑝(𝜽) do not vary with respect to 𝜽 in such 291 

circumstances, the posterior distribution is directly proportional to the likelihood function. 292 

For sufficiently long stationary data, it can be shown that the FFT {𝑭'} at different 293 

frequencies are independent, and each follows a complex Gaussian distribution with auto-294 

covariance matrix equal to 𝑬' (Brillinger, 2001). Therefore, the posterior distribution can be 295 

written as: 296 

𝑝(𝜽|{𝑭'}) ∝ 𝑝({𝑭'}|𝜽) = 𝑒%A({𝑭"},𝜽), (7) 297 

where 298 

𝐿({𝑭'}, 𝜽) = 𝑛𝑁3𝑙𝑛𝜋 + ∑ ln|𝑬'|' + ∑ 𝑭'∗𝑬'%&𝑭''  (8) 299 

is the negative log-likelihood function (NLLF), often used in analysis and computation; 𝑁3 is 300 

the number of FFT points in the selected frequency band. Equation (7) with 𝐿({𝑭'}, 𝜽) was 301 

derived directly from the standard formula for the joint complex Gaussian probability 302 

density function of independent vectors {𝑭'}, each with covariance matrix 𝑬' (Brillinger, 303 

2001). Since the NLLF and, hence, the posterior distribution depend on 𝜽 entirely through 304 

𝑬', it is apparent that the modal parameters in the problem comprise those necessary to 305 

specify 𝑬', i.e.,  306 
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𝜽 = !𝑓. , 𝜁. , 𝝋. , 𝑆.! , 𝑆7: 𝑖, 𝑗 = 1,…𝑚$ (9) 307 

where 𝑆.!  is the complex conjugate of 𝑆!.  (𝑆.! = 𝑆BCggg). On the other hand, the mode shapes 308 

are subjected to a scaling constraint, often normalized to have unit norm, i.e., each 𝑛 × 1 309 

vector 𝝋.  has a sum of squares equal to 1. The symbolic expression in equation (9) is 310 

treated, conceptually and computationally (Section 2.3), as a vector containing all the modal 311 

properties.  312 

 313 

2.3 Posterior statistics computation 314 

As is common in Bayesian inference problems, the posterior distribution of 𝜽 does not 315 

correspond to any standard distribution because the likelihood function 𝐿({𝑭'}, 𝜽) depends 316 

on 𝜽 in a nonlinear manner unsuitable for analytical treatment mathematically. 317 

Nevertheless, the distribution of 𝜽 is often unimodal in typical modal identification 318 

applications with hundreds of FFT values in a frequency band, and a Gaussian distribution 319 

provides a good approximation of the empirical distribution of 𝜽. Consequently, the 320 

(Gaussian) posterior distribution is characterized by the mean vector and covariance matrix 321 

of 𝜽. Analogous to the best estimate in non-Bayesian methods, the mean is a 𝑝 × 1 vector 322 

(𝑝 = number of parameters) that contains the most probable value (MPV) of 𝜽. The 323 

covariance matrix is a 𝑝 × 𝑝 symmetric matrix that can be used to quantify the remaining 324 

identification uncertainty about 𝜽 despite the use of data.  325 

 326 

Mathematically, it can be shown that the MPV minimizes the NLLF, and the posterior 327 

covariance matrix is equal to the inverse of the Hessian matrix of the NLLF at the MPV. Due 328 

to the large number of parameters in 𝜽 and its nonlinear appearance in the NLLF, it is not 329 

possible to obtain an analytical solution for the MPV, and it can be computationally 330 
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prohibitive to use generic optimization algorithms (e.g., simplex search, Newton-Rapson 331 

method) that do not require information about the functional relationship between 332 

variables. Instead, iterative algorithms that exploit the special mathematical (matrix algebra) 333 

structure of the NLLF in different cases have been developed to estimate the MPV, 334 

especially for well-separated modes (𝑚 = 1) (Au, 2011) and general multiple (possibly 335 

‘close’, i.e., with similar frequencies) modes (𝑚 > 2) (Au, 2012; Li and Au, 2019). In contrast, 336 

analytical formulas have been developed for computing the Hessian of the NLLF (Au, 2012, 337 

2011; Li and Au, 2019). Using the numerical algorithms, the estimates for well-separated 338 

modes can be obtained in a matter of seconds, but the time required to compute estimates 339 

for close modes is often significantly longer, depending on the number of modes, proximity 340 

of modes, and signal noise. For two close modes, the estimation time typically ranges from a 341 

few seconds to a few minutes. In some cases, a solution may not be obtained if the 342 

convergence criteria of the iterative algorithm are not satisfied. However, the failure to 343 

converge usually indicates that information in the data is insufficient to identify the 344 

parameters, and the estimates given by other explicit methods lacking convergence issues 345 

will likely be poor or misleading.  346 

 347 

2.4 Quantification of identification uncertainty 348 

For scalar parameters, such as the natural frequency and damping ratio, the identification 349 

uncertainty can be quantified in a dimensionless manner by the ‘coefficient of variation’ 350 

(c.o.v.), defined as the ratio of the standard deviation of a parameter to the corresponding 351 

MPV. The former is the square root of variance, which is the corresponding diagonal entry 352 

of the posterior covariance matrix. Based on experience, a c.o.v. near 10% and 30% often 353 

suggest low and moderate uncertainty, respectively. Otherwise, a higher c.o.v. usually 354 
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indicates a poor estimate, possibly arising from, in the context of the model used, a lack of 355 

sufficient evidence in the data about the parameter or a violation of modeling assumptions.  356 

 357 

Since the identified (partial) mode shape, 𝝋., is a 𝑛 × 1 vector subjected to scaling 358 

constraint, its uncertainty quantification requires special treatment. It is not possible to 359 

obtain a proper estimate of uncertainty by simply dividing the standard deviation of a 360 

particular element of the mode shape vector by the MPV. Fortunately, it turns out that the 361 

square root sum of the eigenvalues of the 𝑛 × 𝑛 covariance matrix of mode shape gives a 362 

measure analogous to the c.o.v. of a scalar parameter (Au, 2017; Au and Zhang, 2011).  363 

 364 

2.5 Anticipating and managing identification uncertainty 365 

Based on the outlined Bayesian formulation (Section 2.2) and computational algorithms 366 

(Section 2.3), the identification uncertainty of a given parameter can be calculated using 367 

available data, but the estimates do not yield any a priori insight about the relationship 368 

between identification uncertainty and test configurations, such as the duration of 369 

measurement, sensor characteristics, and measurement positions. Recently, several 370 

analytical expressions were developed that explicitly relate the posterior c.o.v. to 371 

fundamental parameters (e.g., 𝑁D, 𝜅, 𝛾; defined shortly) that characterize the test 372 

configuration (Au et al., 2021, 2018). For example, a well-separated mode with frequency 𝑓 373 

and damping ratio 𝜁 may be identified using FFT values in the band 𝑓(1 ± 𝜅𝜁), where 𝜅 is a 374 

dimensionless bandwidth factor that quantifies the amount of relevant information in the 375 

data. The value of 𝜅 depends on the measured data and subject mode, but a value of 5 to 10 376 

is common and may be assumed in applications. The c.o.v. of frequency (𝛿3) and damping 377 

ratio (𝛿2) can be anticipated using (Au, 2017; Au et al., 2018):  378 
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where 𝑁D = (data	duration)/(natural	period) is a dimensionless measure of data 380 

duration, 𝐵3 and 𝐵2  are dimensionless ‘data length factors’, i.e., monotonic increasing 381 

functions (from 0 to 1) of 𝜅 that quantify the effect of 𝜅 on the effective data length: 382 
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𝛾 = 𝑆../4𝑆7𝜁( is the modal signal-to-noise ratio (s/n) that measures the quality of data; and 384 

𝑎3 and 𝑎2  are dimensionless monotonic increasing functions of 𝜅 (Au, 2017; Au et al., 2018). 385 

Expressions with a similar mathematical form were recently developed for estimating the 386 

identification uncertainty for close modes (Au et al., 2021).  387 

 388 

The formulas in equation (10) require that the data is distributed as the assumed likelihood 389 

function. They were derived assuming the existence of long time histories, small damping, 390 

and high s/n ratio. Offering a good approximation in many situations, the formulas guide 391 

expectations about identification uncertainty for different test configurations and allow for 392 

the optimal refinement of experimental plans. The formulas imply, for example, that the 393 

identification uncertainty decreases with 𝛾 to a non-zero value, even for a noiseless sensor 394 

(𝛾 → ∞), reflecting the lack of information about the input excitation. In ideal situations, the 395 

achievable precision limits from ambient vibration data occur when 𝛾 → ∞ and the data 396 

length factors (i.e., 𝐵3 and 𝐵2) are unity, and the corresponding equations simply become 397 

𝛿3( = 𝜁/2𝜋𝑁D  and 𝛿2( = 1/2𝜋𝜁𝑁D. Generally, 𝛿3 ∝ 5𝜁 and 𝛿2 ∝ 1/5𝜁, which agrees with 398 

empirical observations that for small damping ratio the frequency is much easier to estimate 399 

than the damping ratio (Burcham et al., 2020; Kane et al., 2014), and the identification 400 
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uncertainty for 𝑓 and 𝜁 differ by an order of magnitude (Au, 2017; Brincker and Ventura, 401 

2015).  402 

 403 

2.6 Detecting modal frequencies from PSD and SV spectra 404 

The algorithm requires an initial guess of the modal frequencies, and the values can be 405 

determined by visually identifying and manually selecting peaks in the PSD and SV spectra. 406 

The PSD spectrum depicts the frequency characteristics of a stochastic, stationary time 407 

history. For a time history containing 𝑁 observations recorded at Δ𝑡 (s) intervals, it is often 408 

estimated by averaging the squared modulus of the FFT computed from 𝑀 non-overlapping, 409 

shorter segments, yielding a ‘sample PSD’ for the analyzed segment of the entire time 410 

history. At each frequency, the sample variance of the averaged PSD will be inversely 411 

proportional to 𝑀, but the frequency spacing will increase proportional to 𝑀, since Δ𝑓 =412 

𝑀/𝑁Δ𝑡 (Hz). The number of segments 𝑀 should be carefully selected to avoid inflating 413 

either the sample variance or frequency spacing (Δ𝑓).  414 

 415 

The PSD exhibits a distinct peak near the natural frequency of a mode, but it does not 416 

necessarily indicate the number of contributing modes in a frequency band. For example, 417 

three uniaxial sensors positioned at the same location and oriented identically would record 418 

very similar vibration measurements. The PSD of the recorded data would show similar 419 

distinct peaks near the same natural frequency of the structure, but the measurements 420 

clearly do not demonstrate the existence of three modes at the same frequency. However, 421 

the SV spectrum, depicting the eigenvalues of the real part of the sample PSD matrix at each 422 

frequency, can be used to detect the number of contributing modes in a frequency band. At 423 

each FFT frequency f', the (𝑖, 𝑗) entry of the sample PSD matrix is equal to the average of 424 
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𝐹.'𝐹!'∗  over the 𝑀 sets of FFTs, where 𝐹.'denotes the FFT of measured DOF 𝑖 of a segment 425 

(similar notation for 𝐹!').  426 

 427 

The number of contributing modes in a frequency band can be determined empirically by 428 

the number of peaks in the SV spectrum. For a single, isolated mode 𝑖 in a frequency band 429 

unaffected by noise, the 𝑛 × 𝑛 PSD matrix, approximately equal to 𝑆..|ℎ.'|(𝝋.𝝋.
/, has only 430 

one non-zero eigenvalue proportional to 𝑆..|ℎ.'|(, since 𝝋.  is 𝑛 × 1, and the eigenvalue 431 

varies with frequency in a manner similar to dynamic amplification |ℎ.'|(. Due to the 432 

presence of noise in most measurements, the remaining eigenvalues will actually be smaller 433 

non-zero values reflecting the amount of noise in the data. For multiple modes, the 434 

𝑛 × 𝑛	PSD matrix will have a rank equal to the number of 𝑚 contributing modes in the 435 

frequency band, assuming the partial mode shapes are not co-linear. In such cases, the SV 436 

spectrum will contain 𝑚 eigenvalues varying with frequency in a similarly peaked manner, 437 

and the remaining (𝑛	– 	𝑚) eigenvalues will depict the amount of noise in the data at each 438 

frequency. See Shih et al. (1988) or Au (2017) for more information about detecting modal 439 

frequencies from the SV spectrum.   440 

 441 

3 Field case study 442 

To illustrate the identification of modal properties, the Bayesian method presented in 443 

Section 2 was used to estimate the modal properties of a large, open-grown tree using 444 

ambient vibration measurements.  445 

 446 
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3.1 Site and trees 447 

One Hopea odorata Roxb. (Dipterocarpaceae) tree was selected for measurement in this 448 

study (Figure 1a). Situated in a residential landscape, the tree height and trunk diameter at 449 

breast height (1.37 m above ground) were 27.4 m and 0.46 m, respectively. Commonly used 450 

as an amenity tree in Southeast Asia, this species was selected because its excurrent 451 

branching pattern produces a more consistent vibration behavior than decurrent branching 452 

patterns (James et al., 2006).  453 

 454 

3.2 Sensor and data 455 

Tree movement was recorded using a triaxial accelerometer with integrated power supply 456 

and data storage (AL100, Oregon Research Electronics, Tangent, Oregon) attached to the 457 

trunk immediately below the crown (Figure 1b) at approximately 13 m above ground. See 458 

van Emmerik et al. (2017) for more information about the accelerometer. Starting at 1800H 459 

on 5 July 2018, the accelerometer recorded movement continuously at 10 Hz within a range 460 

of ± 2 g (1 g = 9.81 m	s%() over a one-week period. Attached to the tree using two elastic 461 

cords, the sensor was oriented visually with its x-axis parallel to the longitudinal axis of the 462 

trunk (i.e., roughly vertical). The y- and z-axes of the sensor were similarly oriented 463 

tangential and perpendicular, respectively, to the local bark surface. Using a right-handed 464 

coordinate system, the sensor recorded positive accelerations along the x- and z-axes 465 

downward and away from the trunk surface, respectively. For short-term monitoring, 466 

mechanical fasteners will also maintain the orientation of vibration sensors, but the 467 

production of wound periderm around fasteners may disturb the sensor orientation over 468 

longer time periods. After linearly detrending the data, the acceleration measured along the 469 

x-axis was relatively small compared to measurements on the other two axes (Figure 2), and 470 
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a slowly varying drift, likely attributed to sensor noise, was observed for the same 471 

measurements. The y and z channels generally displayed an oscillatory movement expected 472 

of ambient vibration. The data was clearly non-stationary over the time scale of one week 473 

with obvious fluctuations in signal variance likely associated with changes in environmental 474 

conditions. Given the assumption of a stationary response for modal identification, the 475 

entire one-week data record was divided into 165 non-overlapping one-hour segments. The 476 

modal properties of the tree were identified using each one-hour segment of data, expected 477 

to be stationary within each segment, separately (Section 3.4).  478 

 479 

 480 

Figure 1 The ambient vibrations of one Hopea odorata Roxb. (Dipterocarpaceae) (a) were 481 
monitored using an accelerometer attached to the trunk immediately below the crown (b).  482 

 483 
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 484 

Figure 2 Time history of ambient vibration (detrended) recorded over a one-week period on 485 
a mature Hopea odorata Roxb. (Dipterocarpaceae) tree. 486 

 487 

3.3 Analysis of a typical short time history 488 

Using data from the first hour of measurements, the PSD spectrum was computed by 489 

dividing all observations into 18 non-overlapping time windows of 200 s each, and the 490 

resulting frequency spacing was 1/200 = 0.005 Hz (i.e., 200 FFT points shown in the range 491 

from 0.005 to 1 Hz). The frequency spacing is also equal to the lowest non-zero frequency 492 

displayed in the spectrum. For clarity around the lower frequencies, the limited frequency 493 

range was selected because an initial examination of the data from other time intervals 494 

showed qualitatively similar spectra with peaks in PSD at frequencies below 1 Hz. Except for 495 

the broad peaks in PSD near 0.15 Hz and 0.5 Hz, likely associated with the vibration modes 496 

of the tree, there was a slowly decreasing trend in PSD with increased frequency for all data 497 
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channels, especially around the lower frequencies (Figure 3a). Roughly inversely 498 

proportional to frequency, this spectral feature was caused by the pink noise of the sensor. 499 

Since the x channel was minimally affected by tree vibration, it roughly reflected the noise 500 

level present in the sensor at most frequencies, and the PSD for all three channels 501 

converged to similar values at frequencies above 0.7 Hz. The peak around 0.15 Hz in the x 502 

channel likely reflects the small projection of large horizontal accelerations onto the 503 

longitudinal axis. Except for very low frequencies, the noise PSD for the x channel was about 504 

10%O𝑔(	Hz%&, which is typical for MEMS accelerometers.  505 

 506 

The peaks near 0.15 Hz and 0.5 Hz (Figure 3a) were likely caused by the vibration modes of 507 

the tree. The Bayesian method in Section 2, as implemented algorithmically by Au (2012), 508 

was used to estimate modal properties for the lowest two modes near 0.15 Hz, often the 509 

subject of related investigations. As mentioned at the end of Section 2.1, the peaks in PSD 510 

associated with measurements from the x (longitudinal), y (tangential) and z (radial) 511 

channels merely indicate that the corresponding directions were affected by the mode, but 512 

this does not reveal the number of modes around this frequency. The two lines near 0.15 Hz 513 

showing peaks in the SV spectrum (Figure 3b) suggested that two close modes, i.e., with 514 

similar frequencies, occurred near the frequency.  515 

 516 

Using the FFT of acceleration data on a frequency band covering the modes selected from 517 

the SV spectrum, the MPV of modal parameters during the first hour of ambient vibration 518 

was estimated using the Bayesian formulated iterative algorithm (Table 1). The MPVs for the 519 

natural frequencies of the two modes, at approximately 0.13 Hz (mode 1) and 0.15 Hz 520 

(mode 2), were consistent with the location of peaks in PSD (Figure 3a) and the range of 521 



 

24 
 

natural frequencies observed on large trees (de Langre, 2019; Moore and Maguire, 2004), 522 

and the c.o.v. for the natural frequencies indicated an accurate estimate. Consistent with 523 

experimental measurements of trees (Jonsson et al., 2007; Kane et al., 2014), the damping 524 

ratios were about 10% for both modes, but the identification uncertainty was about 10 525 

times higher than the frequency estimates. Compared to natural frequency, the higher 526 

identification uncertainty for damping ratio was similar to other observations in engineering 527 

applications (Au, 2017; Brincker and Ventura, 2015). 528 

 529 

 530 

Figure 3 (a) Power spectral density (PSD) and (b) singular value (SV) spectrum (one-sided) 531 
computed from the first hour of ambient vibration recorded on a mature Hopea odorata 532 
Roxb. (Dipterocarpaceae) tree. In PSD plot, (blue, green, red) = (x,y,z); In SV plot, (blue, 533 
green, red) = singular value in descending order of magnitude. Note: The three lines in the 534 
SV spectrum, denoting the three eigenvalues of the real part the 3 × 3 PSD matrix at each 535 
frequency, do not correspond to the three measurement channels (x,y,z) shown in the PSD 536 
spectrum. 537 

 538 

Since they were identified on the same band, the noise PSD for both modes were the same 539 

(Table 1), but the modal force PSD differed slightly between the two modes. The PSD of 540 

modal force (per unit modal mass) has the same unit as the PSD of the response 541 

acceleration and noise [(µg)(	Hz%&]. The modal force PSD can be used for investigating the 542 

potential dependence of modal properties on the amplitude of vibration (Section 3.4.2), and 543 
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the noise PSD can be used to verify other noise estimates. The noise PSD [17.7 × 103 544 

(µ𝑔)(	Hz%& 	= 1.77 × 10%O𝑔(	Hz%&] was consistent with the background noise level 545 

reflected in the SV spectrum (Figure 3b; red line). Using the formula 𝛾 = 𝑆/4𝑆7𝜁(, the s/n 546 

ratio of the first and second modes was approximately 466 and 254, respectively, generally 547 

considered moderate and acceptable.  548 

 549 

Table 1 Summary of modal properties estimated using the first hour of ambient vibration 550 
recorded on a mature Hopea odorata Roxb. (Dipterocarpaceae) tree.  551 

 
Frequency Damping ratio Modal force PSD Noise PSD 

Mode 𝑓) [Hz] 𝜁) [%] 𝑆)) [(µ𝑔)*	Hz+,] 𝑆- [(µ𝑔)*	Hz+,] 

1 0.128 9.8 320 × 10. 17.7 × 10. 
 

(0.76%) (8.1%) (6.2%) (4.3%) 

2 0.145 12 245 × 10. 17.7 × 10. 
 

(0.77%) (7.7%) (6.6%) (4.3%) 

Note: For each modal parameter, the first row contains the most probable value (MPV) and 552 
the second row contains the coefficient of variation (c.o.v. = standard deviation/MPV), 553 
reflecting the identification uncertainty. 554 

 555 

Since the sensor measured translational accelerations along three orthogonal axes, the 556 

identified (partial) mode shape, 𝝋.  (equation (2)), for each mode was a 3 × 1 vector 557 

containing the mode shape components for each DOF corresponding to a different 558 

measurement axis. The mode shape was constrained to a unit vector in three dimensions, 559 

but the length of the vectors projected onto the y-z plane was close to one for modes 1 and 560 

2, indicating negligible vibration along the x-axis (Figure 4). Even though no such assumption 561 

was applied in the identification process, the dominant horizontal (y, z) components of the 562 

most probable mode shape for modes 1 and 2 were approximately perpendicular. Kovacic 563 

et al. (2018) similarly observed orthogonal oscillations in a leafless, unbranched tree sapling, 564 
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and the authors explained the vibration behavior using the mechanical properties 565 

associated with the principal axes in which oscillations occurred. However, there is a need 566 

for additional measurements over longer time periods to determine the prevalence of two 567 

perpendicular close modes in trees and their association with tree morphometry.  568 

 569 

Distinct from the uncertainty estimates for scalar quantities, the uncertainty for the mode 570 

shape estimate, a vector-valued quantity, may not be determined by the c.o.v. of a 571 

particular mode shape component corresponding to a measured DOF (Section 2.4). 572 

Interpreted in a manner analogous to the c.o.v. of a scalar variate, the ‘mode shape c.o.v.’ is 573 

defined as the square root sum of eigenvalues of the 𝑛 × 𝑛 posterior covariance matrix of 574 

the subject 𝑛 × 1 mode shape vector, with 𝑛 = 3 for the present case. The 𝑛 × 𝑛 posterior 575 

covariance matrix of the mode shape can be obtained from the covariance matrix of 𝜽 576 

containing all modal parameters (Section 2.3). The mode shape c.o.v. for modes 1 and 2 577 

were about 5% and 9%, respectively (Figure 4), indicating acceptable uncertainty around the 578 

mode shape estimate. The mode shape uncertainty was also depicted graphically using 579 

arrows spanning a four standard deviation interval (±2σ), computed using the square root of 580 

the largest eigenvalue of the 3 x 3 mode shape covariance matrix, along the principal 581 

direction of variation, determined using the largest eigenvector of the same matrix, 582 

projected onto the y-z plane.   583 
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 584 

Figure 4 Most probable mode shape (black arrows) projected on the y-z plane of the sensor 585 
coordinate frame and ±2𝜎 (two-sigma bound) uncertainty (blue arrows) for two close 586 
modes identified using the first hour of ambient vibration recorded on a mature Hopea 587 
odorata Roxb. (Dipterocarpaceae) tree.  588 

 589 

3.4 Analysis of long-term monitoring data 590 

Given the reasonable uncertainty for modal estimates obtained using a one-hour segment, 591 

the same time window was used to examine changes in modal properties over the entire 592 

week. Although some researchers have segmented longer time histories into irregular 593 

intervals for analysis (Schindler and Mohr, 2018), most existing studies have used fixed 594 

intervals, often one hour or less, for examining changes in the dynamic mechanical behavior 595 

of trees (Granucci et al., 2013; Hale et al., 2012; Schindler et al., 2010). The choice of a time 596 

window used for analysis deserves greater consideration in future work (Section 4), but the 597 

one-hour segment used in this study ensured the analysis of ample FFT values in a selected 598 

frequency band obtained from a time interval with reasonably consistent loading 599 

conditions, precluding systematic fluctuation associated with diurnal variation or mesoscale 600 

phenomena. Based on the analysis of the initial one-hour segment, the same frequency 601 

band and initial guess of the natural frequencies were used consistently for all remaining 602 

segments. After repeating the estimation process using consecutive, non-overlapping one-603 
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hour segments from the one-week period of measurement, the MPVs for each modal 604 

property varied considerably over time (Figure 5). This variation may arise from 605 

environmental conditions or statistical identification error, but the change in MPVs beyond 606 

the identification error suggests the tree’s modal properties varied over time. For the same 607 

periods, the modal force PSD also varied over several orders of magnitude, indicating 608 

changes in environmental conditions (e.g., wind and temperature) over the corresponding 609 

intervals. As a result of identification error, the estimates often appeared noisy, with poor 610 

continuity between consecutive data sets. In particular, the two damping ratio estimates 611 

above 20% were notably different from neighboring values, and these distinctively large 612 

values were likely associated with poor identification during periods of weak tree 613 

movement. For these two estimates, the modal force PSD was exceptionally low (< 614 

10%O𝑔(	Hz%&), suggesting inadequate excitation to induce vibration during the one-hour 615 

interval.  616 
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 617 

 618 

Figure 5 Tracking changes in modal properties (frequency, 𝑓., damping ratio, 𝜁., and modal 619 
force PSD, 𝑆..) identified from the ambient vibration of a mature Hopea odorata Roxb. 620 
(Dipterocarpaceae) tree over one week. Individual observations show the estimates for a 621 
one-hour time window, with a marker at the most probable value (MPV) and a ±2𝜎 error 622 
bar indicating identification uncertainty. The green and blue markers denote estimates for 623 
mode 1 and mode 2, respectively. Note: ‘PSD’ is the auto PSD 𝑆..  of modal force. 624 

 625 

3.4.1 Mode shape direction 626 

Over the one-week period, the two modes occurred approximately orthogonal to one 627 

another (Figure 6). While the identified mode shape directions were generally consistent 628 

over time, the ensemble variability among one-hour intervals (~60%) was considerably 629 

greater than the identification uncertainty for a given estimate (< 10%). For modes 1 and 2, 630 

the average mode shape direction was −37∘ (ensemble SD 21∘, c.o.v. 58%) and 46∘ 631 

(ensemble SD 29∘, c.o.v. 62%), respectively. In such cases, it is important to examine the 632 

different sources of variability carefully. While the identification uncertainty informs the 633 
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quality of the estimate, the ensemble variability often reflects changes in the modal 634 

properties or environment. A small identification uncertainty does not imply that the 635 

estimate from the next data set will be close to the current one, especially when the modal 636 

properties vary over time. For the measured tree, these observations indicate the persistent 637 

occurrence of two nearly orthogonal close modes over time.  638 

 639 

Figure 6 Tracking changes in the mode shape angle (degrees) identified from the ambient 640 
vibration of a mature Hopea odorata Roxb. (Dipterocarpaceae) tree over one week, with a 641 
marker at the most probable value (MPV) and a ±2𝜎 error bar indicating identification 642 
uncertainty. The empty and filled markers denote estimates for mode 1 and mode 2, 643 
respectively. Note: the mode shape angle depicts the counter-clockwise positive angle 644 
formed between the most probable mode shape and positive y-axis (Figure 4).  645 

 646 

3.4.2 Potential amplitude dependence of frequency and damping ratio 647 

After plotting modal frequency, 𝑓., and damping ratio, 𝜁., against the modal force PSD, 𝑆.., 648 

there was an obvious pattern among observations indicating a relationship between the 649 

modal properties and excitation intensity (Figures 7 ‒ 8). In general, the plots showed that 650 

frequency and damping ratio varied with the excitation intensity and, consequently, 651 

vibration amplitude in opposing directions. Despite considerable scatter around the trend, 652 

the estimates indicate a strong amplitude dependence in the modal properties of trees, and 653 

the identification uncertainty for individual estimates provide a means to weigh 654 

observations in empirical models of amplitude dependence. Notably, the individual 655 
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observations depict the time-averaged dynamic behavior of trees over the time window 656 

used for analysis, and this treatment could be affected by fluctuations in environmental 657 

loads within this period. In the engineering disciplines, several researchers have attributed 658 

amplitude dependence in the vibration properties of structures (Au et al., 2012; Satake et 659 

al., 2003) to a stick-slip frictional behavior in structural components (Aquino and Tamura, 660 

2013), possibly arising from material imperfections (Jeary, 1997), but the velocity-661 

dependent dissipation of energy through aerodynamic drag, especially around leaves, likely 662 

contributes to the phenomenon in trees. At present, there are no clear existing reports of 663 

amplitude dependence in the modal properties of trees, and the development of empirical 664 

models from more extensive observations could illuminate this relationship, especially to 665 

supplement limited theoretical models for damping ratio. Although wind conditions were 666 

not measured in this work, it would be useful to compare the modal force PSD with suitable 667 

measurements of wind conditions near trees monitored in future work.  668 

 669 

 670 

Figure 7 Scatter plot of modal frequency, 𝑓., and damping ratio, 𝜁., against modal force PSD, 671 
𝑆.., for mode 1 identified from the ambient vibration of a mature Hopea odorata Roxb. 672 
(Dipterocarpaceae) tree over one week (two outliers with damping ratios beyond 20% are 673 
out of scale). The error bars show the ±2𝜎 identification uncertainty for each quantity.  674 
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 675 

 676 

Figure 8 Scatter plot of modal frequency, 𝑓., and damping ratio, 𝜁., against modal force PSD, 677 
𝑆.., for mode 2 identified from the ambient vibration of a mature Hopea odorata Roxb. 678 
(Dipterocarpaceae) tree over one week. The error bars show the ±2σ identification 679 
uncertainty for each quantity.  680 

 681 

4 Challenges and practical considerations for the ambient modal identification of trees 682 

The modal properties estimated using the Bayesian method outlined in this work were 683 

physically reasonable and consistent with existing measurements of the vibration properties 684 

of trees in the published literature (de Langre, 2019; Moore and Maguire, 2004), including 685 

other tropical broadleaf trees (Burcham et al., 2020), but it will be important to carefully 686 

consider several issues in any future work. Among all considerations, the quality and 687 

quantity of data will fundamentally influence the identification results and subsequent 688 

investigations. The noise level (10%O𝑔(	Hz%&) associated with the MEMS accelerometer 689 

used in this study was comparable to other commercial models, and the modal s/n ratio, in 690 

terms of PSD, varied acceptably between the low multiples of 101 and 102. Although some 691 

piezoelectric and servo accelerometers offer greater sensitivity and lower noise, especially 692 

at lower frequencies, they are often more costly, heightening risks associated with outdoor 693 

use, and require a larger power supply that constrains installation on a tree. Moreover, the 694 



 

33 
 

low frequency drift of data due to temperature variation and aging of electronic 695 

components, a common issue for many sensors, did not cause any obvious artefacts, since it 696 

occurred at different time scales than the dynamics of the subject mode. Still, there is a 697 

need to evaluate sensor characteristics (i.e., measurement performance, data storage, 698 

power supply, environmental protection) and assess their suitability for monitoring ambient 699 

tree vibration over long periods.  700 

 701 

In ambient modal identification, the unknown, varying excitation force, mainly wind loads, 702 

and sensor characteristics will affect the modal s/n ratio, and it is inevitable that some 703 

modes may not be reliably identified (i.e., subject to large uncertainty) or even detected in a 704 

particular time window. Using long-term monitoring data, some of the modes may only be 705 

adequately excited intermittently to permit reliable identification by the Bayesian (or any 706 

other) algorithm. As the magnitude of wind loads and modal participation (related to the 707 

spatial correlation of wind distribution and mode shape) typically decrease with frequency, 708 

the first few modes of trees will likely be identified more consistently and accurately than 709 

higher modes.  710 

  711 

In general, the length of the time window used for analysis should balance the conflicting 712 

requirements to maximize identification precision (the longer the better) and modeling 713 

error risk (the shorter the better), and the recently developed explicit formulas for 714 

identification uncertainty (Section 2.5) can be used to select a time window that achieves a 715 

desired level of accuracy for a particular situation. For data with acceptable s/n ratio (e.g., > 716 

100), the required time window for a well-separated mode typically ranges from a few 717 

hundred to a thousand times the natural period, possibly extending up to nearly two hours 718 
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for large, mature trees. For close modes, the time window must be longer, depending on 719 

the proximity of modes (the closer the longer) and the coherence of modal forces (the 720 

higher the longer). Beyond these requirements, the time window should be as short as 721 

possible to reduce potential modeling error arising from non-stationary data and time-722 

varying modal properties. If the close modes detected in this study are commonly 723 

encountered in trees, it will be important to carefully evaluate these trade-offs and 724 

recommend suitable values in future work. Especially for amplitude dependence studies 725 

requiring a range of loading conditions, the interval at which the environmental loads 726 

fluctuate should be considered alongside the requirements for identification precision to 727 

select the time window used for analysis. For example, it would be important to select the 728 

longest possible time window containing relatively consistent momentum exchange regimes 729 

when examining amplitude dependence associated with low frequency wind gusts.  730 

 731 

5 Conclusions 732 

Despite a longstanding interest in the vibration of trees under natural wind loading (Baker, 733 

1997; Gardiner, 1994; Holbo, 1980; Mayer, 1987), the development of methods to identify 734 

the modal properties of trees has received relatively little attention from forest scientists. In 735 

related studies, many researchers depicted the vibration behavior of trees using 736 

representative Fourier spectra (James et al., 2006; Schindler et al., 2013b), and this 737 

descriptive approach mostly emphasized the dominant frequencies observed under certain 738 

conditions, precluding a quantitative, statistical treatment of all modal properties over time. 739 

In contrast, the method outlined in this study usefully estimates the modal properties of 740 

trees and characterizes the associated identification uncertainty. The advancement of 741 

similar methods will expand investigative opportunities for scientists interested in the 742 



 

35 
 

dynamic mechanical behavior of trees, especially to mitigate the risk of wind damage to 743 

trees and forests, and it will be important to improve on existing work by examining the 744 

suitability of underlying modeling assumptions and improving the numerical performance of 745 

algorithms, especially for studying tree vibration during ambient wind loads. Given the 746 

similarity between measurements in this study and existing reports, the method appears 747 

broadly suitable for identifying the modal properties of trees in scientific and practical 748 

settings. Alongside a valuable treatment of uncertainty, the measurements yielded new 749 

information about the vibration behavior of large trees, including the persistent occurrence 750 

of two nearly orthogonal close modes near the tree’s fundamental frequency and a strong 751 

amplitude dependence in frequency and damping ratio.  752 
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Appendix I. Nomenclature 924 

Abbreviations 
DOF(s) Degree(s) of freedom 
FT, FFT Fourier Transform, Fast Fourier Transform 

PSD Power spectral density 
SV Singular value 

NLLF Negative log-likelihood function 
MPV Most probable value 
OMA Operational modal analysis 

Basic symbols 
𝒊 Purely imaginary number; 𝒊 = √−1 
𝑰8 𝑛 × 𝑛 identity matrix 
𝑡 Time (s) 
∆𝑡 Time interval (s) 
𝑁 Number of samples in a time window of data used for modal identification 
f' FFT frequency (Hz) 

Structural dynamics 
𝑿(𝑡) Displacement (m) vector for all DOFs in the equation of motion 
�̇�(𝑡) Velocity (m	s%&) vector for all DOFs in the equation of motion 
�̈�(𝑡) Acceleration (m	s%() vector for all DOFs in the equation of motion 
𝑴 Mass (kg) matrix 
𝑪 Damping [N	m%&	s%&] matrix 
𝑲 Stiffness (N	m%&) matrix 
𝑭(𝑡) Time-varying force (N) vector 

Modal dynamics 
𝑓.  Natural frequency (Hz) of mode 𝑖 
𝜔.  Natural frequency (rad	s%&) of mode 𝑖; 𝜔. = 2𝜋𝑓.  
𝜁.  Damping ratio (dimensionless) of mode 𝑖 
𝝍.  Mode shape (dimensionless column vector) of mode 𝑖 
𝑝.(𝑡) Modal force per unit modal mass (N	kg%&) of mode 𝑖 
𝜂.(𝑡) Modal displacement of mode 𝑖 
ℎ.' Frequency response function (dimensionless) of mode 𝑖 at frequency 𝑓' 

Modal identification 
𝑛 Number of measured DOFs 
𝑚 Number of modes in a frequency band 
𝑁3 Number of FFT points in a frequency band 
�̈�!  Measured acceleration (𝑔 = 9.81 m	s%() at time step 𝑗 (𝑛 × 1 vector) 
𝑭' Scaled FFT (𝑔	Hz%&/() of !�̈�!$!"#

$%&
 at frequency f' (𝑛 × 1 vector) 

𝝋.  Mode shape (dimensionless) confined to the measured DOFs (𝑛 × 1 vector) 
𝜺L𝑡!M Sensor noise (𝑔) at time 𝑡!  (𝑛 × 1 vector) 
𝜺' Scaled FFT (𝑔	Hz%&/() of sensor noise at frequency f' 
𝑆.!  Cross-PSD (𝑔(	Hz%&) between 𝑝.  and 𝑝!  
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𝑆7  PSD (𝑔(	Hz%&) of sensor noise 
𝑬' Theoretical 𝑛 × 𝑛 PSD matrix of measured data 
𝜽 Vector of modal properties 

𝐿({𝑭'}, 𝜽) Likelihood function with FFT {𝑭'} data evaluated at 𝜽 
 925 


